A Graphene Superconductor That Plays More Than One Tune

superconductivity in a trilayer graphene moiré superlattice

Researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a graphene device that’s thinner than a human hair but has a depth of special traits. It easily switches from a superconducting material that conducts electricity without losing any energy, to an insulator that resists the flow of electric current, …

X-Ray Snapshots of Light-driven Superconductivity Captured

Scientists at Brookhaven National Laboratory have uncovered a key factor behind the emergence of superconductivity, the ability to conduct electricity with 100 percent efficiency. Precisely timed pairs of laser pulses at the SLAC National Accelerator Laboratory’s Linac Coherent Light Source (LCLS) triggered superconductivity in the copper-oxide material under investigation. Researchers took x-ray snapshots of its …

Asymmetric Scattering in Superconductor Dopants

Recently scientists have uncovered materials that can be converted from magnetic insulators or metals into Superconductors, capable of carrying electrical current with no energy loss. It is an extremely promising concept for zero-resistance electronics, energy-storage and transmission systems. Currently, in addition to keeping the materials very cold, a major step to achieving superconductivity is to …